Partners developing microorganisms for the production of bioplastics from waste

by

The Centre for Process Innovation (CPI) is working with ReBio Technologies Ltd and the University of Bath to produce modified strains of microorganisms to produce D-lactic acid for the manufacture of biobased products such as high performance bioplastics.

The partners say the project has the potential to address an important need in the industrial biotechnology community by transitioning away from petrochemical and agricultural-based feedstocks to second-generation, waste-derived feedstocks.

The project intends to demonstrate lab scale production of D-lactic acid from modified Geobacillus strains. Once proven, these lab scale demonstrations will then be employed to design and demonstrate a scalable manufacturing process.

CPI says using second-generation waste derived feedstocks, such as animal wastes or scraps from food production, that currently have little or no value, are ideal. This would increase their economic worth, whilst reducing waste and providing additional support to a growing waste problem.

The bacterial host grows at high temperatures and has the ability to convert long chain sugars (C5-C6) from non-food materials. This approach would enable the production of D-lactic acid directly via fermentation rather than current processes, which require chemical conversion of L-lactic acid produced from food-based feedstocks such as starch.

ReBio Technologies Ltd is an industrial biotechnology company specialising in the development of proprietary routes to key commodity platform biochemical and has experience in developing industrial strains based on a Geobacillus host bacteria for the production of bioethanol.

The company develops and applies cutting edge tools in biotechnology to elucidate and design new biosynthetic pathways in a range of microbial hosts, for the efficient and cost-effective production of high-value chemicals through fermentation.

This, coupled with state-of-the-art polymer technology, provides manufacturing industries with innovative solutions to their raw material requirements. Industrial biotechnology is recognised by UK government as a promising means of developing low carbon products and processes.

CPI says the technology that the project is hoping to demonstrate has the potential to unlock an economic approach to transforming cellulosic sugars and the millions of tonnes of food and landfill waste derived sugars produced every year into sustainable, high value chemicals.

In addition to the above, the project will develop a business model and identify partners for future development activities.

Dan Noakes, Business Development Manager at CPI, said: ‘’Biobased polymers will have a major part to play in the fruition of the biobased economy. D-lactic acid is a challenge to produce but it has the potential to open new markets for Polylactic acid use in high performance structural materials. Rebio’s technology will enable the use of a variety of waste sugars and this lends itself well to CPI’s aspiration to develop a sustainable biorefinery platform.”

Jonathan Glen, CEO of ReBio Technologies Ltd, said: ‘’ReBio is committed to finding new ways to utilise waste in a sustainable and commercially viable process. This program and its successful outcome will help to strengthen our development, commercialisation, and manufacture of products that show the strength of UK innovation at its best’.”

Back to topbutton