Thermoplastic composites for EV battery applications This year, Asahi Kasei will put a special focus on its broad range of materials for lightweight, compact, and safe electric vehicle battery solutions.
Asahi Kasei
The company is currently developing a new continuous glass fibre reinforced thermoplastic, LENCEN, and will present it for the first time at the European trade show Fakuma.
This composite material is formed by stacking layers of continuous glass fibre textiles with polyamide 66 (PA66) films. Due to its tensile strength, high heat resistance, and impact properties similar to metal, this material improves collision safety and weight reduction of EV batteries.
In addition, the company will showcase a carbon fibre reinforced thermoplastic unidirectional tape (CFRTP-UD tape) that utilizes both recycled continuous carbon fibre and the company’s LEONA polyamide resin. Boasting a higher strength than metal, this CFRTP-UD tape can be applied to automobile frames and bodies, further enabling the recycling of end-of-vehicle-life parts into different, new automobile parts.
Asahi Kasei will also showcase cooling pipes for EV battery packs made of the modified polyphenylene ether (m-PPE) XYRON, as well as 2170 cell trays based on the m-PPE particle foam SunForce.
Solutions for improved HMI and glass replacement AZP is a transparent polymer that the company claims overcomes the disadvantages of conventional optical plastic materials. Featuring a close-to-zero birefringence equivalent to glass as well as a superior designability, It is claimed that this material allows high transmittance and low colour distortions at all viewing angles.
Clear images without luminance variations, colour distortion and blurring can be achieved in polarized optical equipment such as AR/VR headsets and head-up-displays (HUDs). The premium quality appearance is also maintained when looking at the display through polarized sunglasses.
Bio-based feedstock and new recycling technology for PA66 Asahi Kasei will display a bio-based and biodegradable cellulose nano fibre (CNF). This material is made from cotton linter and features a high heat resistance and network-forming ability. CNF- reinforced polyamide shows a thixotropic behavior, making it highly suitable for 3D printing applications in terms of easy printing, dimensional accuracy, smooth appearance, and mechanical performance.
The company claims that CNF has superior material recyclability compared to glass fibres.Cleaning the equipment after processing the plastics in an efficient and cost-effective manner is a major challenge for many companies.
The company will also present its comprehensive solutions for establishing a sustainable life cycle for PA66 utilizing bio-based feedstock and a new technology for chemical recycling. Together with Japanese partner company Microwave Chemical, the company is working on a new technology for chemical recycling of PA66. The process utilizes microwaves to depolymerize automotive airbags and other PA66 parts and directly obtain the monomers hexamethylenediamine (HMD) and adipic acid (ADA), which is expected to be accomplished at high yield with low energy consumption. The monomers obtained can then be used to manufacture new PA66.